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Abstract

In this work, a thermal molding technique is proposed for the fabrication of plastic electronics on curved surfaces,
enabling the preparation of plastic films with freely designed shapes. The induced strain distribution observed in
poly(ethylene naphthalate) films when planar sheets were deformed into hemispherical surfaces clearly indicated that
natural thermal contraction played an important role in the formation of the curved surface. A fingertip-shaped
organic thin-film transistor array molded from a real human finger was fabricated, and slight deformation induced by
touching an object was detected from the drain current response. This type of device will lead to the development of
robot fingers equipped with a sensitive tactile sense for precision work such as palpation or surgery.
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Background
Plastic and printed electronics have recently attracted
extensive interest for flexible and stretchable device appli-
cations. However, research on device fabrication tech-
nologies for curved surfaces is not as active even though
many modern commodities consist of smoothly curved
plastics such as poly(ethylene terephthalate) bottles, blis-
ter packs, medical tubes, and connectors. Although the
adaptability of stretchable electronics to spherical surfaces
has been demonstrated [1], stretchable devices generally
cannot maintain their self-standing shape on their own.
Therefore, not only flexible or stretchable devices but
also curved-surface devices are needed for a wide range
of applications. For example, if robot fingertips could be
equipped with sensitive thermal and tactile sense using
curved-surface electronic devices, more precise surgical
operation could be performed using medical robots.
In this paper, we present a novel technique to fab-

ricate an electronic device array on a freely designed
curved surface via thermal molding of plastic sheets and
direct melting of organic semiconductors with subsequent
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recrystallization, which is expected to enable the prepara-
tion of 3D plastic electronics. We fabricated a fingertip-
shaped organic thin-film transistor (OTFT) array as a
curved surface device test case and succeeded in detecting
slight deformation induced by a soft touch from an object.

Methods
Thin poly(ethylene naphthalate) (PEN) films (Teijin Ltd.,
Japan) with thicknesses of 75 μm were used as substrates.
The substrates were coated with a 900-nm-thick parylene-
SR layer after thermal evaporation of a Au gate electrode
pattern. The thick parylene layer was used to prevent
stochastic gate leakage. A Au contact electrode pattern
was then deposited on the surface and was chemically
treated using a pentafluorobenzenethiol self-assembled
monolayer (PFBT-SAM) to reduce the contact resistance
[2–6]. An appropriate amount of dioctylbenzothienoben-
zothiophene (C8-BTBT) powder [7–22] was transferred
onto the substrate, and then, another PEN film with a
thickness of 25 μm was placed on the powder. The pair
of PEN films and organic powder were then thermally
pressed using a mold to fabricate a thin-film device with
curved surfaces. The mold temperature was gradually
increased up to 170 °C, and then, a pressure of 85 kPa
was applied. This state was maintained for 5 min under
active control of the applied pressure. The temperature of
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the sample was gradually decreased to 40 °C, and then,
the heat clamp was opened and the sample was retrieved.
We modified a previously reported thermal pressing
method [23] by replacing the press plate with a curved
mold. The curvedmold used in the study of strain induced
during the formation of a spherical surface consisted of
a pair of spherical lens, and the mold in the fingertip-
shaped OTFT array was an original mold formed using
the fingertip of one of the authors. Theminimum radius of
curvature of the original mold was approximately 7 mm,
as estimated using a spherical approximation. Electrical
measurements of the fabricated TFTs were performed
using a source meter in the dark under vacuum (Keithley
6430 and 2635A). For tactile sensitivity tests, we con-
structed an original tester. The configuration of the tester
and the principle of the measurement are shown in Fig. 1.
The tester consisted of a micrometer and sample stage,
on which electrical measurements were performed. The
center of the fingertip-shaped OTFT array was weakly
pressed and slightly distorted by the rod of the microme-
ter, and the increase or decrease of the drain current of the
OTFT was measured. As illustrated in Fig. 1b, simple nor-
mal compression induces lateral compressive strain in the
OTFT because the OTFT plane was on the compression
side of 25% from the neutral strain surface toward the total
thickness. Flexible electronic devices are typically placed
on a neutral strain surface to prevent irreversible degrada-
tion or a change of characteristics during bending. In our
work, this standard practice was moderately ignored for
our purposes.

Results and Discussion
We first estimated the strain distribution of the plastic
film substrate generated by the formation of the curved
surface from the planar sheet. Even a flexible film can-
not be completely attached to a general curved surface
because the Ricci scalar (scalar curvature) of the planar
sheet is zero even when the sheet is rolled into a cylin-
der. However, the Ricci scalar is nonzero for a general
curved surface. For example, the Ricci scalar of a spher-
ical surface is 2/r2, where r is the radius of the spherical
surface. Two surfaces with different Ricci scalar values
cannot be fitted with each other without causing wrinkles.
In this work, a spherical lens with a radius of curvature
of 25.8 mm was used as a mold because a spherical sur-
face is the simplest curved surface; the radius of curvature
is uniform for a spherical surface. The strain distribution
was estimated by measuring the side and diagonal lengths
of the square pattern of the Au thin film evaporated on
the PEN films. A photograph of the spherical surface test
piece is presented in Fig. 2a. The spherical surface was
precisely formed except for the four corners, which was
expected because the four corners of the PEN films were
not covered by the mold, i.e., the pair of convex and con-
cave spherical lens. We compared the side and diagonal
lengths of the square pattern before and after the forma-
tion of the spherical shape. Histograms of the side length
are presented in Fig. 2b, c. In Fig. 2b, the longitudinal
and lateral lengths of the square pattern have almost the
same distribution at the center of the spherical surface;
however, in Fig. 2c, the distributions of the longitudinal

Fig. 1 a Schematic illustration of the tactile sensitivity tester, which consisted of a micrometer and sample stage. The sample was pressed by the rod
of the micrometer in the normal direction. The normal displacement of �h is the distance from the initial top height of the fingertip-shaped surface
to the height of the pressed surface. b Schematic principle of tactile sensing by OTFT array. Electronic devices placed on a neutral strain surface are
not exposed to lateral strain because the tensile and compressive strain cancel each other on the neutral strain surface [27–31]. However, the OTFTs
placed on the off-neutral strain surface were exposed to lateral compressive strain due to the slight distortion of the fingertip-shaped curved surface
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Fig. 2 Estimation of tensile and compressive strain induced by forming spherical surface from planar sheet. a Photograph of spherical PEN surface
with square pattern of Au thin film. Histograms of longitudinal and lateral side lengths of square pattern b at the center of the spherical surface and
c in the peripheral region. Strain distribution map for d longitudinal length, e lateral length, and f, g diagonal length. MD denotes the machine
direction, which is the direction in which the PEN film was drawn into the roll during the manufacturing process, and TD denotes the transverse
direction, which is the direction perpendicular to MD in the plane of the film. The thermal contraction ratios along MD and TD are generally different
for commercial plastic films

and lateral lengths are clearly separated, and both ten-
sile and compressive strain are observed in the peripheral
region. Both the compressive and tensile strain increased
from the center to the peripheral regions. The lengthmea-
surements are summarized in Fig. 2d–g. These results
indicate that the tensile and compressive strains occur in
the radial and circumferential directions, respectively. The
observed tensile strain is due to the stretching deforma-
tion of the PEN film resulting from the molding. However,
the compressive strain is possibly caused by natural ther-
mal contraction of the PEN film, which is effective for
the formation of a curved surface device without caus-
ing excess stretching of the substrate film. In addition,

in this case, the Poisson effect occurs in the thickness
direction because the plastic sheet was originally fabri-
cated by stretching in the plane direction; therefore, the
sheet shrinks in the in-plane direction and expands in the
normal direction to approach the original dimensions.
Figure 3 presents a photograph of the fingertip-shaped

plastic OTFT array fabricated using our thermal molding
technique. There are 88 OTFTs on the fingertip-shaped
surface, and measurement terminals were arranged along
the periphery in the planar region. Some wrinkles are
observed in the peripheral planar region; however, the
curved surface region was precisely formed along the
mold shape. Therefore, this device could be completely
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Fig. 3 Photograph of fingertip-shaped OTFT array on the human
finger

attached onto a human finger, as shown in Fig. 3. The
interval of the OTFT array was 1 mm, which is shorter
than the separation distance at which a human finger can
distinguish two point contacts by tactile sense. The chan-
nel lengths and widths of the individual OTFTs were 20
and 1340 μm, respectively.
The typical TFT characteristics for the OTFT array are

presented in Fig. 4a. p-type OTFT characteristics were
observed, reflecting the p-type semiconductor nature of
the C8-BTBT semiconductor. Compared with the stan-
dard C8-BTBT OTFT characteristics observed for OTFTs
fabricated using other solvent-free methods [23–26], the

carrier injection barrier appears to be relatively high in
the output characteristics. Although the Au contact elec-
trodes were chemically treated with PFBT-SAM to reduce
the contact resistance, PFBT-SAM is thermally unstable
and gradually deteriorates above 150 °C. Our thermal
molding process includes thermal processing at 170 °C
for more than 10 min. Therefore, it is possible that the
effect of the PFBT-SAM layer deteriorated because of the
thermal history. The increase of the off current is pos-
sibly due to the relatively high thickness of the organic
semiconductor layer. A thick semiconductor layer can
cause a large off current in a TFT structure because C8-
BTBT naturally exhibits high electrical conductivity. The
large off current is not due to the gate leakage current
because the observed gate leakage current was approx-
imately 10−12 A, which is much smaller than the drain
current. The estimated effective field-effect hole mobil-
ity was approximately 0.05 cm2/V s. The relatively low
effective mobility for C8-BTBT is mainly due to the short
channel length of 20 μm; the contact resistance generally
dominates over the observed effective mobility for a short
channel length [9].
The carrier mobility and threshold voltage map pre-

sented in Fig. 4b, c summarizes the properties of the 88
TFTs. The working OTFTs are colored along the effec-
tive field-effect mobility. A group of working OTFTs
are observed. However, the thicknesses of the OTFTs
were not sufficiently uniform because of the limitation in
mechanical precision of the present mold. Therefore, the
distributions of the observed field-effect hole mobility and
threshold voltage were wide at present.
The fingertip-shaped OTFT array was configured for

use as a robot finger for precision work such as palpation

Fig. 4 a Typical output and transfer characteristics of fingertip-shaped OTFT array. Maps of the observed b field-effect hole mobility and c threshold
voltage in the OTFT array, respectively. The colored pixels indicate working OTFTs, and the empty pixels indicate poor FET characteristics
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or surgery using a sensitive tactile sense. Therefore, we
performed tactile sensitivity tests. The drain current of an
OTFT was continuously monitored under the bias condi-
tion of VDS = −30 V and VGS = −30 V . It is possible to
calibrate the sensitivity of eachOTFT by adjusting the bias
condition. However, the bias condition was fixed in the
present study. The fingertip shape was placed on the test
equipment and slightly pressed in the normal direction
of �h from the initial height by the micrometer, as illus-
trated in Fig. 1a. The initial drain current (ID) observed in
the (S8, GD3) pixel in Fig. 5d was approximately 6.5 μA
with no load, as shown in Fig. 5a. During compression
with normal displacement (�h of 0.1, 0.2, 0.3, 0.4 and
0.5 mm), the increase of ID was approximately 0.3, 0.4,
0.5, 0.7 and 0.9 μA, respectively. The increase of the drain
current clearly depended on �h. These responses were
reversible and highly sensitive. Therefore, OTFTs that are
directly pressed by the micrometer rod received compres-
sive stress, which agrees with both the simple prediction
illustrated in Fig. 1b and the calculated stress distribution
simulated by the finite element method on a hemispher-
ical surface shown in Fig. 6. On the other hand, because

Fig. 5 Time response of the drain current to a slight touch with an
object. The variation of the drain current in an OTFT in the
fingertip-shaped OTFT array was detected in relation to a vertical
displacement of �h under VGS = −30 V and VDS = −30 V . The
observed drain current in the OTFT increased during the application
of the displacement, and the drain current difference during the
compression clearly depends on�h. d Locationmap of the OTFT array
and contact area with micrometer rod. The dotted circle indicates the
direct contact area of the OTFT array with the micrometer rod. The
(S8, GD3) pixel is directly under the rod, the (S18, GD4) pixel is far from
the contact area, and the (S6, GD3) pixel is near the contact area

Fig. 6 Calculated principal stress distribution on the modeled thin
PEN hemisphere face calculated using finite element method. With
increasing �h, compressive stress arises within and near the contact
area, and strong local tensile stress arises in the periphery of the
contact area

the entire shape was affected by the applied displace-
ment, all the working OTFTs, including those that were
not directly touched, also detected the displacement, as
shown in Fig. 5b, c. Figure 5b shows that the (S18, GD4)
pixel was obviously separated from the contact area with
the micrometer rod . In Fig. 5b, a decrease of ID was
observed during the application of displacement, which
corresponds to the detection of tensile strain in the pixel.
The decrease of ID corresponds to the�h in Fig. 5b.More-
over, Fig. 5c shows the response observed slightly outside
the rim of the micrometer rod. This region was unique. ID
clearly decreased with increasing �h in the 0.3–0.5 mm
region; however, ID slightly increased for �h of 0.1 mm ,
i.e., compressive stress was applied to the (S6, GD2) pixel
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during the initial stage of deformation, and the tensile
stress gradually increased with increasing displacement.
The mechanism for the generation of compressive stress
during the initial stage is the same as that illustrated in
Fig. 1b; however, a hemispherical surface exhibits struc-
tural resistance against normal compression compared
with the simple cylindrical surface assumed in Fig. 1b.
Therefore, the fingertip-shaped surface locally sunk at and
near the contact area with the micrometer rod, as illus-
trated in Fig. 6 (�h = 0.5 mm) because our device sheet
was very thin. Therefore, the (S6, GD2) pixel exhibited
compressive stress during the initial stage of deformation,
and tensile stress arose by the local sinking of the sur-
face due to the external force transmitted by the rod. The
surface of our real finger is also slightly and intricately
distorted with a soft touch of an object, which enables
detection of the hardness and texture of the object.

Conclusions
The fabrication of plastic electronics on curved surfaces
using thermal molding was demonstrated in this work.
The induced strain distribution of PEN films when planar
sheets were deformed into spherical surfaces clearly indi-
cated that natural thermal contraction played an impor-
tant role in the formation of the curved surface to avoid
excess tensile strain, which could result in fracture of
the electrode pattern. The OTFT characteristics of a
fingertip-shaped OTFT array molded from a real human
finger were also examined. The drain current response to
slight deformation induced by touching an object clearly
increased with increasing internal strain. By scanning the
OTFTs, it would be possible to detect the hardness or edge
of an object based on the internal strain distribution. This
type of device array fabricated on a curved surface will
enable the development of robot fingers equipped with
a sensitive tactile sense, which is sufficient for precision
work such as palpation or surgery.
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